Assess the Intramolecular Cavity of a PAMAM Dendrimer in Aqueous Solution by Small-Angle Neutron Scattering

نویسندگان

  • Tianfu Li
  • Kunlun Hong
  • Lionel Porcar
  • Rafael Verduzco
  • Paul D. Butler
  • Gregory S. Smith
  • Yun Liu
  • Wei-Ren Chen
چکیده

We present a contrast variation small-angle neutron scattering (SANS) study of a series of neutral PAMAM dendrimers in aqueous solutions using three different generations (G4-6) at a concentration of about 10 mg/mL. Varying the solvent hydrogen-deuterium ratio, the scattering contributions from the water molecules and the constituent components of PAMAM dendrimer can be determined. Using an analytical model of the scattering cross section I(Q) incorporating the effect of water penetration, we have quantified the intramolecular space of PAMAM dendrimer by evaluating the number of guest water molecules, and we draw a direct comparison to computational predictions. As expected, the overall available internal cavity was seen to increase as a function of increasing dendrimer generation. However, the fraction of water accessible volume of a dendrimer was found to remain invariant for the three generation PAMAM dendrimers studied in this report. We have also estimated the average water density inside a dendrimer, which is found to be higher than that of bulk water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAMAM dendrimers undergo pH responsive conformational changes without swelling.

Atomistic molecular dynamics (MD) simulations of a G4-NH(2) PAMAM dendrimer were carried out in aqueous solution using explicit water molecules and counterions (with the Dreiding III force field optimized using quantum mechanics). Our simulations predict that the radius of gyration (R(g)) of the dendrimer changes little with pH from 21.1 A at pH approximately 10 (uncharged PAMAM) to 22.1 A at p...

متن کامل

Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions.

This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueo...

متن کامل

Structure of polyamidoamide dendrimers up to limiting generations: a mesoscale description.

The polyamidoamide (PAMAM) class of dendrimers was one of the first dendrimers synthesized by Tomalia and co-workers at Dow. Since its discovery the PAMAMs have stimulated many discussions on the structure and dynamics of such hyperbranched polymers. Many questions remain open because the huge conformation disorder combined with very similar local symmetries have made it difficult to characteri...

متن کامل

Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups.

This article discusses the feasibility of using dendrimer enhanced ultrafiltration (DEUF)to recover Cu(II) from aqueous solutions. Building upon the results of fundamental investigations of Cu(II) binding to PAMAM dendrimers with ethylenediamine (EDA) core and terminal NH2 groups, we combine (i) dead-end ultrafiltration (UF) experiments with (ii) atomic force microscopy (AFM) characterization o...

متن کامل

Structure of PAMAM Dendrimers: Generations

The structure and dynamics of poly(amido amide) (PAMAM) dendrimers have been of great interest both scientifically and industrially, but such important features as the distributions of atoms, channels, and strain inside these molecules remain unresolved. This paper reports results from systematic investigations of the atomistic structure of ethylenediamine (EDA) cored PAMAM dendrimer up through...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008